Thursday, December 20, 2012

Integration Reduction Formula

Introduction to Integration Reduction Formula:

There are many functions whose integrals cannot be reduced to one or more the other of the well known standard forms of integration . However , in some cases these integrals can be connected algebraically with integrals of other expressions which can either be directly integrable or which may be easier to integrate than the original functions . Such connecting algebraic relations are called 'reduction formulae' . These formu;ae connect an integral with another which is of the same type , but is of lower degree or order or at any rate easier to integrate than the original one .

Example of Integration Reduction Formula

Ex:1  Find the reduction formula for  `int` xn eax dx , n being a positive integer and hence evaluate `int` x^3 eax dx .

Sol: Let  In  =  `int` xneax   dx   .

On using the formulae for integration by parts , we get

In   =   `(x^n e^(ax))/(a)`    -  `int` n xn-1  `(e^(ax))/(a)`   dx

=   `(x^n e^(ax))/(a)`    -   `(n)/(a)` `int` xn-1  eax  dx   .

=     `(x^n e^(ax))/(a)`    -  `(n)/(a)` In-1   .

This is called reduction formulae for  `int` xn eax dx   .   Now  In-1  in turn can be connected to  In-2   .  By successive reduction of  n  , the original integral In finally depends on I0  ,  where  I0 =  `int` eax dx    =   `(e^(ax))/(a)`     .

To evaluate `int` x^3 eax dx  , we  take a = 5  and use  the reduction formula  for  n = 3 , 2 , 1 in that order . Then we have I have recently faced lot of problem while learning how to solve linear equations word problems, But thank to online resources of math which helped me to learn myself easily on net.

I3  =   `int` x^3 e5x dx   =    `(x^3 5^(ax))/(5)`   -  `(3)/(5)` I2    .

I2   =   `(x^2 e^(5x))/(5)`   -  `(2)/(5)` I1

I1  =  `(xe^(5x))/(5)`   -  `(1)/(5)` I0

I0   =   `(e^(5x))/(5)`    +    c

Hence    I3   =  `(x^3 e^(5x))/(5)`   -  `(3)/(5^2)` x2e5x   +  `(6)/(5^3)` xe5x    -   `(6)/(5^4)` e5x  +  c

Integration Reduction Formula- Example

Q:1 Find the reduction formula for  `int` tannx  dx   for an integer  n`>=` 2  and hence  find `int` tan6x dx .

Sol : Let  In  =  `int` tannx  dx

=     `int` tann-2x  tan2x    dx

=    `int` tann-2x   sec2x   dx     -     `int` tann-2x   dx

=     `(tan^(n-1)x)/(n-1)`   -   In-2   ,

which is the required reduction formula .

When n is even  , In will finally depend on

I0   =   `int` dx      =    x + c1

When  n is odd  ,   In  will finally depend on

I1   =   `int` tanx  dx    =   log (secx)   +   c2

Now   ,    I6    =    `int` tan6x  dx

=     `(tan^5x)/(5)`   -  `int` tan4x  dx

=   `(tan^5x)/(5)`   -   `(tan^3x)/(3)`   +  `int` tan2x   dx

=     `(tan^5x)/(x)`   -   `(tan^3x)/(3)`   +  tanx  -  x  +  c .

No comments:

Post a Comment